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We present an analytical and numerical study of the nonlinear response near the lower gap of a simple
system that is intercalated between two linear systems. In this finite system, the long-range interaction
potential of the Kac-Baker type is taken into account in addition to the nonlinear substrate potential,
which is naturally asymmetrical or has its symmetry broken by an external force. The modulated wave
solutions are investigated in the weakly nonlinear case and in the small wave vector limit to calculate the
gap soliton envelope and the transmissivity that presents bistability. The results in connection with the
sine-Gordon system are discussed. It is shown that when the long-range interaction parameter increases,
the bistability of the system tends to disappear in the cooperative short-range interactions case. Also in
the competitive short-range interaction case, there are hole gap standing waves for larger values of the

long-range parameter.

PACS number(s): 42.25.Bs, 42.65.Pc, 78.20.Dj

I. INTRODUCTION

The nonlinear response and transmission properties of
one-dimensional systems such as periodic structures [1,2],
nonabsorbing [3-5] and absorbing [6,7] superlattices, and
quasiperiodic [8] structures of finite dimension have been
extensively studied. More recently again, the transmis-
sion properties of one-dimensional systems perturbed by
an external constant force and submitted to any substrate
potential (symmetrical or asymmetrical) [9] have been
studied. The infatuation for this branch of nonlinear
physics comes from the large range of physical applica-
tions that are related to it. One can note, for example,
the transmission through optical fibers that occurs with
great incidence in optical communications, the memory
effects of certain lattices resulting from their multistabili-
ty, and finally the possibility of forcing the intimate
characteristics of some materials by compelling them to
propagate and transmit waves that they naturally im-
pede. Most of the works previously mentioned have been
focused on optical systems and thereby do not present
any general aspect as to their application in other scopes
of physics. By contrast, other more general works are
based on the intimate structure of the lattice via the
motion of its particles and can be reset by analogy with
optical models. However, many studies of the lattice vi-
brations in one-dimensional chains of atoms have been
based essentially on short-range interactions. For exam-
ple, the Frenkel-Kontorova model of dislocation dynam-
ics [10] is a simple model of a chain of atoms interacting
via next neighbor harmonic forces and placed in a period-
ic external substrate potential. The Toda lattice [11],
which is an atomic linear chain with exponential nearest
neighbor forces, has been refined and extended to treat
real physical systems where interatomic forces extend
further than the nearest neighbors. Thus the various
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types of long-range interatomic forces commonly encoun-
tered are the power-law interactions [12,13], the
Lennard-Jones long-range coupling [14], and the Kac-
Baker long-range interaction [15,16]. The power-law in-
teraction models have been found to yield improved
quantitative agreement with some experimental features
such as the explanation of the observed finite exponent
that appears on the density of solitons at zero tempera-
ture [12]. In the case of lattice models with a long-range
coupling of the Lennard-Jones type, it has been shown
that the value of the long-range parameter does not con-
tribute to the nonlinear term but to the dispersion terms
of the equation of propagation in the continuum limit
[14]. The Kac-Baker long-range interaction is a well
studied example in which the interactions between parti-
cles fall off exponentially as the distance between them in-
creases. It has been used by many authors to analyze the
thermodynamics of systems such as the Ising [15,16],
Pott [17], continuum ®* [18], as well as the discrete ®*
models [19-21]. It has also been used to study the effect
of long-range interactions on the properties of the nonto-
pological solitonlike excitations in one-dimensional
anharmonic monatomic [22] and diatomic [23] lattices in
a compressible Heisenberg chain [24], on the topological
solitons in the sine-Gordon system [25], and on the classi-
cal statistical mechanics of one-dimensional sine-Gordon
and double sine-Gordon systems [26,27]. The energetic
analysis has been used to study the effect of a perturbing
force on the Kink motion in a ®* system with the Kac-
Baker potential. It has been shown that the kink velocity
or mobility not only depend on the external field, but also
on the long-range interaction parameter [28]. Another
interesting result is that the intensity of the central peak
decreases, whereas peaks of the soft-phonon mode in-
crease [29]. One fundamental aspect of the long-range in-
teractions was pointed out by Remoissenet and Flytzanis,
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who showed the possible coexistence of supersonic and
subsonic kink pulse solitons found in the continuum ap-
proximation, and the existence of a domain velocity
separated by gaps whose width can be modulated by the
long-range parameter [22]. They also show that in the
low amplitude limit of oscillations, envelope and dark sol-
itons can coexist in a continuous chain allowing, more-
over, anharmonic cubic interactions between nearest
neighbors [22]. However, it follows from this glimpse
that, as far as we know, no study has focused on finite lat-
tices allowing long-range interactions. In addition, no at-
tention has been paid to the transmission properties of
such systems, perturbed by an external constant force
and admitting harmonic and anharmonic interactions be-
tween nearest neighbors. In the continuum limit approxi-
mation and considering the Kac-Baker long-range cou-
pling, we will base our investigations on this topic. Thus
there is considerable interest in understanding and im-
proving nonlinear responses of finite systems admitting
long-range interactions, both from a theoretical
viewpoint as well as from the viewpoint of experimental-
ists, who need such models to explain features in real
physical systems. Our paper is organized as follows. In
Sec. II, we present the general discrete model and its con-
tinuum approximation. After looking for the envelope
function equation in the low-amplitude limit in Sec. III,
boundary conditions are found in Sec. IV and stationary
solutions are presented in Sec. V. Numerical discussions
and concluding remarks are presented in Sec. VI to out-
line the principal points of our investigations.

II. MODEL

The system considered is a perfect one-dimensional
(1D) nonlinear monatomic lattice intercalated between
two linear 1D lattices. Along the x direction, an incident
wave with angular frequency o, scalar dimensionless field
amplitude E,, and wave number k; =w/c; propagating
in a linear medium (1) with velocity c; strikes at x =0, a
nonlinear medium (2) of length L with discrete masses m.
The nonlinear and linear lattice steps are, respectively, a
and b. The quantity R is the amplitude of the reflected
wave measured with respect to E, and T is the amplitude
of the transmitted wave at x =L in the linear medium (3).
Within the nonlinear medium, each particle interacts
with its nearest neighbors through a potential that in-
cludes a cubic and quartic nonlinearity. Moreover, each
particle i interacts with another particle j, inducing long-
range interactions. We assume that the field y;(z) obeys
the Hamiltonian of the form
2

dy;
=% ;: +}_‘,U(y,)+ zmoV(y,
+ E;V =y’ 2.1)

i#j

The first term of the right hand side of Eq. (2.1)
represents the kinetic energy carried by the field; the
second term is the nonlinear short-range potential that
describes harmonic and anharmonic interactions between
nearest neighbors. It takes the form
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—Yi—1)2+%k3(y,"yx'“1)3

S U= 3 [k,

+%k4(}’i —Yi-1)4] , 2.2)

where k,, k;, and k, are harmonic, cubic, and quartic
anharmonic interaction coefficients, respectively. The
third term is the symmetrical (sine-Gordon) or asymme-
trical (®*) substrate potential. The last term in the Ham-
iltonian is a harmonic Kac-Baker long-range pair poten-
tial [18,22]:

J(1—r)
2r

V.= pli=it, (2.3)

)

The coefficient J is a constant measuring the elastic ener-
gy of the lattice and r is a parameter that characterizes
the intensity of the long-range interactions. The limiting
values of r are such that 0<r <1; the absolute difference
|i —j| measures the distance between sites i/ and j. The
virtue of this interaction potential is that the range can
vary continuously. The interaction between particles
falls off exponentially as the separation between them in-
creases. The prefactor (1—r) in Eq. (2.3) is chosen to en-
sure that the total potential experienced by one atom, due
to all others, is finite in the thermodynamic limit
[18,22,20]. Thus we have

Sv,=J. (2.4)
i#y
In a finite system, the number of particles is finite and
(2.4) is valid only in a certain limit r, of the parameter r,
as we will show in our numerical results. Consequently, J
is independent of the range of interactions. The equation
of motion of the ith particle derived from (2.1) is

d? y,
=ky(¥iv1— 2y Y1)
k3[(}’i+1_)’i)2—(J’i_J’i—1)2]
dvi(y;)
R AL i - ,')3—( i~ Yi— )3 "‘G2
AYiv—y Vi—Yi—1)] odyi
— > iy, —y;) 2.5)
i#j

Afterwards, we will put J,=J/m, G; =k;/m (i=2,3,4),
and w3=G3/m. With these deﬁnmons, and using Eq.
(2.4), we rewrite Eq. (2.5) in the reduced form,

d Zy i d V(y, )

o =% —wg———2,y,+L; ,

2.6
; dy (2.6)

i
where F; is the harmonic, cubic, and quartic anharmonic
interaction forces between nearest neighbors correspond-

ing to the first three terms of the right hand side of Eq.
(2.5). The auxiliary quantity L; is given by

L=r
L= 2'1

r i#j

2.7

Introducing the quantities L; ., and L, _, we get the fol-
lowing recursive relation:
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Li=(L;y,+L;—)

J,(1=r)
t————i 12y tyi-1), (2.8)
which only implies nearest neighbor terms. This proper-
ty is going to be very useful to obtain the discrete motion
equation. We now make the continuum approximation,
which assumes that the lattice is excited by waves of
great spatial extension. This implies a slow variation of
the surface wave curvature during its spatiotemporal
variation. Consequently, terms in Egs. (2.8) and (2.5) im-
plying subscripts i+1 and i—1 can be expanded in a
Taylor series up to the four order derivatives. This in-
creases the dispersion and allow us to balance the non-
linearity introduced by anharmonic interactions. There-
fore, the resulting equation of motion in the continuum
approximation is

dv

Ve —XoVxx +w(2)7d}_

=X Vtexx +X2/vxxxx +p[(yx )z]x +q[(yx )3]x

dVv
+ 2 — .
X3 |4 dy 12 | dy ’ 2.9)

XXXX

4
_d_K] +a

where the subscripts denote partial derivatives according
]
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to the corresponding variables. Coefficients of Eq. (2.9)
are defined by

Yo=a> LU+ __a’r
° Pha-m? P =
p=a’G;, ¢=a‘G,, (2.10)
x=a—4 La+r) | g4
212 (1—r2 (1—r? "’
ra)%
=57 2.11)

where the length scale a is the step of the lattice. Some of
these results were obtained [22] in the case of pure anhar-
monic chains (i.e., without any substrate potential).
Looking for small oscillations near the bottom of the po-
tential well, we write

Y(x,t)=dy+ed(x,1) , 2.12)

where @, is the equilibrium position around which oscil-
lations take place. For ¢,70 the system is asymmetrical
[30,9] (®* potential) or symmetrical but perturbed by an
external force (e.g., perturbed sine-Gordon system). The
parameter € is small so as to ensure collective oscillations
® around ¢,. Using Eq. (2.12), the derivatives of the sub-
strate potential are expanded in terms of ®. Substituting
the result in Eq. (2.9) yields

B, —cX(r )y, + (D +eaD+EBD’)=f (1P ypey +h (PP ey +€[p (@] +€X[(@,)];

+esg

where a=a,/a, and B=a;/a, depend on the equilibri-
um position of oscillations that can be modified by an
external force. Constants a;, a,, and a; are given by

w= %?—) oy, K123 2.14)

oP=a,03 cir)=a? GZ+M,, (2.15)
(1—r)

h(r)=2-16, J”“::)r;m‘l’z = (rlai(_jﬁ) , (216

- ra’oy} ra’oy 217

T T

c(r) is the velocity of linear waves. f(r)=y, and h(r)
are the dispersion coefficients; s, and s; are the
nonlinear-dispersive coefficients relative to the substrate
potential; p and g are nonlinear coefficients relative to the
anharmonic cubic and quartic interactions, respectively.
The characteristic velocity c(r) and the dispersion
coefficients h(r) depend on the nature (symmetrical or
asymmetrical) of the potential. Consequently, they can

(®?) +li(q>2)
XX 12 XXxXxXx

+é€%s, (2.13)

(@) +“—2(¢3)
XX 12 XXxXx 14

[

be modified by an external force, except for the case of no
long-range interaction (» =0).

III. ENVELOPE FUNCTION EQUATION

The general equation (2.13) obtained previously can
lead to two main types of solutions usually encountered
in nonlinear physics: pulse, kink soliton excitations and
the solution of the nonlinear Schrodinger (NLS) equation,
which is essentially valid in the weakly nonlinear case.
Thus we will restrict ourselves to the weakly nonlinear
case. It is well known that the NLS equation obtained
from this approximation gives rise to two types of local-
ized solutions in a medium infinitely extended. For a
finite medium, standing waves are expected and the
transmissivity can be characterized. Our main purpose is
now to see how the transmissivity of the system can be
controlled by the long-range interaction intensity. First
of all, let us find the envelope nonlinear equation of the
modulation. One way to determine the NLS equation is
to derive the nonlinear dispersion relation and to apply
the inverse Fourier transformation to the equation result-
ing from the Taylor expansion of the frequency around
that of the carrier wave. For convenience, we use the
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multiple scales method, where x and ¢ are scaled into in-

dependent variables xy,x,...,x, and ty,¢;,...,¢,, re-
spectively, with
x,=¢€"x, t,=€"t. (3.1)

The partial derivative operators can thus be written as

a N .3
ax = 2 € (3.2)
a_ N 3
at~n§06 o (3.3)

We now transform Eq. (2.13) by assuming the expansion
until the second harmonic generation. Thus we can write
the solution in terms of the envelope continuum com-
ponent F,(x,t), and envelopes of the first and second
harmonics, respectively, F(x,,t;) and F,(x,,t,); we get
[33,34]

i(kpxoprto

)+c.c.]

2i(kpx0~copto

D=[F,(x,,t;)e

e[ Fo+Fylx,,t,)e tecl, G4

where c.c. represents the complex conjugate, and the
variables k, and w, represent the wave number and angu-
lar frequency of the carrier wave, respectively. We now
substitute Egs. (3.1)-(3.4) in Eq. (2.13). Collecting con-
stant terms yields, after some simplifications, the linear
dispersion relation

og +kicX(r)—k h(r)
l—i-f(r)kp2

a)f, = (3.5)

The shapes of the linear dispersion curve are shown in
Figs. 1(a) and 1(b). We note that in both cases (coopera-
tive and competitive short-range interactions) there is a
linear natural gap whose threshold is at w,=1.0 for
¢0=0.0. This natural gap comes from the substrate po-
tential considered in the model. For each of the short-
range interactions, the wave’s dispersion in the nonlinear
medium increases with the long-range parameter r. For
greatest values of the parameter r, and in particular for
r=0.9, we note that in the competitive short-range in-
teractions the threshold of the gap changes; it is at

0=0.9346 instead of w=1.0. Consequently, for
Jp =—0.1, r=0.9, and w,=0 (no substrate potential), the

linear dispersion curve is undefined for low wave numbers
(k, <0.44). In fact, in this range of wave number values,
the angular frequency is negative. This unphysical
behavior of the linear dispersion arises when one at-
tempts to consider values of r greater than the critical
long-range parameter r, for a given negative value of J,,.
For J, 20 or w,=0, this critical value r, does not exist.
Expression (3.5) is equivalent to that obtained previously
[22] for wyp=0, which is the lower gap edge of the disper-
sion curve. In our case, the lower gap edge varies with
the deformation of the substrate potential submitted to
external perturbations. Those perturbations are assumed
to be constant in space and time.

Collecting the first-order terms [i.e., O(g)] of the zero
and second harmonic, one gets, respectively,
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FIG. 1. Linear dispersion curves for the symmetrical sine-
Gordon system (¢,=0): (a) the cooperative short-range interac-
tions (J, >0 and G, > 0), and (b) the competitive short-range in-
teractions (J, <0 and G, >0).

Fo=—2a|F,|*
and

Fy=po, F? . 3.7

F, is obtained by assuming p=0 (for simplification).

Physically, the coefficient p increases the nonlinearity;

this is not especially needed since we are restricted to the

weakly nonlinear case. The coefficient appearing in (3.7)

is given by

1R ()][4k)s(3—a’k)) +3aw ]
w1+ 5k2f () +4kHh(r)+cXr)f(r)]

(3.8)

Hor

We now collect second order terms of the second har-
monic, and we set

§=x,—v,ty, T=€t . (3.9
Using (3.6) and (3.7), we get

OF, 3’F, oo

i +P ac? +Q|F,|*F,=0, (3.10)

where P is the group-velocity dispersion given by
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20,[1+k2f(r)]
with v, the group velocity expressed as
b= ky[c¥(r)—lf(r)—2kZh(r)]
8 w,[1+k2f(r)]

) (3.11)

(3.12)

For the incoming wave angular frequency near the lower gap edge whose frequency is w,, we have (k,,®,)=(0,w) and,
therefore, v, =0. The nonlinear coefficient Q in (3.10) is given by

20,[1+k}f(r)]

We now study the sign of K =PQ; this allows us to know
what type of low-amplitude solution is expected in the
nonlinear medium, recalling that for K >0 and K <0, en-
velope and hole solutions are respectively expected.
Looking for the region of the long-range parameter in
which one could have each type of solution (envelope or
dark solution), we study in Fig. 2 the behavior of PQ as a
function of r in the competitive short-range interactions.
We note that when |J,| increases, the region of the long-
range parameter 7 in which one could expect a hole solu-
tion is stretched. In the case of cooperative interactions,
we easily note that only envelope solutions exist. The
main difference with the Remoissenet-Flytzanis case is
the presence of the substrate potential and the quartic
nonlinear interactions between first neighbors. Equation
(3.10) is the NLS equation, which will be the starting
point of the derivation of the standing wave equation.

IV. BOUNDARY CONDITIONS

Our purpose is to find the boundary conditions be-
tween linear and nonlinear media implying long-range in-
teractions. The starting point is Eq. (2.13), which de-
scribes the collective oscillations in the nonlinear medi-
um. Because the envelope function does not mainly de-
pend on the nonlinearity close to the rear of the nonlinear
medium, nonlinear terms are neglected in the equation of
motion. The remaining equation evolves fourth-order
derivatives in terms of variables x and ¢:

D, —cUr)®,, +og®=f(r)®,, +h(r)P,,., . 4.1)

Because of the presence of these higher-order partial
derivatives greater care must be taken when searching
analytic expressions for the matching conditions. Equa-
tion (2.13) can in fact be obtained by writing the total en-
ergy conservation. The conservation of energy flow can
thus be deduced. The straightforward procedure is first
to write the finite difference representation of each partial
derivative relative to variable x. Second, each term of the
finite difference is expanded in a Taylor’s series. For a
stationary monochromatic incoming wave of frequency
o, the operator 3/9¢ is substituted by —iw. Finally, we
assume that there is no long-range and short-range in-
teraction (respectively, 7 =0 and J, =0) in the linear sys-
tems. Thus in the resulting equation of motion, we have
c(r)=cp, f(r)=0, and h(r)=h,, where hy=c}a?/12.

B k1o, —2a)(2—La?k2)so+(3—Lak2)s, +3k2q 1+ i (3B+2apu,, —4a?)

(3.13)

The nonzero value of h, comes from the expansion in a
Taylor’s series up to order 4 by applying the continuum
medium approximation to discrete linear media. The
conservation of energy flow at x =0 is then

@,

9x

@,

4.2
o 4.2)

(0,6)=p, (0,6)—p,®,(0,1)

where the subscripts 1 and 2 on P are relative to the
linear and nonlinear media, respectively. Constants u,
and u, are given by

azcz _2h0

- a[cHr)—w?f(r)]—2h(r)

uq 4.3)

and
_ a*[o*—of]
a*[cHr)—o?f(r)]—2h(r)

In the same way, the conservation of energy flow at x =L
is given by

1253 (4.4)

0.1240

0.0768
0.0296
o
a

-0.0176

—0.0648

-0.1120

0.00 0.18 0.36 0.54 0.72 0.90
r

FIG. 2. Behavior of the characteristic dispersive-nonlinear
coefficient K=PQ as a function of the long-range parameter
and for different values of J,. The unperturbed sine-Gordon
system allowing competitive short-range interactions is con-
sidered (¢,=0). When PQ is negative, dark type solutions are
expected. The corresponding region of » depends on the value
of the short-range parameter J,. PQ and r are dimensionless.
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(L,t)=p, (L,t)+p,d,(L,t), 4.5)

a a

where the subscript 3 refers to the linear medium at the
output of the nonlinear medium. The continuity of the
wave amplitude at the boundaries is given by

$,(0,t)=d,(0,1)
D)L, 1)=®(L,1) .

(4.6)
4.7)

Limiting ourselves to the first harmonic term, we write

®,(x,t)=Eo(e" " +Re "t¥)e 7% for x <0,  (48)

<1>2(x,t)=E0[q(x)ei"""eik”x]e‘i“" for 0<x <L ,

(4.9)

iky x

®,(x,t)=E,Te “"e ™ for x>L , 4.10)

where g(x) and o(x) are, respectively, the spatial slowly
varying amplitude and the phase of the envelope func-
tion; insertion of (4.9) and (4.10) in (4.7) yields
|T|=gq(L). This means that the amplitude of the en-
velope function at the output of the nonlinear medium
corresponds to the transmissivity of the system. As
|T|<1, we should always have q(L)=<1. This will be

useful in our numerical studies. Inserting Eqgs.
(4.6)-(4.10) in (4.2) and (4.5) yields, after some
simplifications, the following results:
2 2
dl L
2/-"ZIO+ E)—C_ +4,u%kgl(2) —I— —16,u1kLIO s

0 0

(4.11)

where I =g?*(x) is the intensity of the envelope function;
I, and I, are, respectively, the envelope intensities at
x=0 and x =L. Equation (4.11) is the boundary condi-
tion at x =0. Near the lower gap of the system, we have
®==ag and consequently 1, ~0. The boundary condition
at the input of the nonlinear medium is then

2 2
I
AL a2 || = 1ewkRT, . (412)
dx |, 0
Note that for h,=0, r= =0, h(r)=f(r)=0, and

cX(r)=c3, we recover the prev1ous results [9].

V. STATIONARY SOLUTIONS
OF THE NONLINEAR SCHRODINGER EQUATION

The NLS equation obtained previously governs the
modulation of a quasimonochromatic wave train in the
case of weakly nonlinear and dispersive systems. This
equation yields to well-known applications in optics, plas-
ma physics, and fluid dynamics. The particular interest
of this equation is its complete integrability. Under cer-
tain boundary conditions that decay as x —t 0, it has
been shown that the NLS equation admits soliton solu-
tions. When the nonlinear medium is bounded (i.e.,
0=<x <L), solutions are expressed in terms of Jacobian
elliptic functions [2]. In this case, the envelope function
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is at rest in the space because of the vanishing of the
group velocity; from expressions (3.12), it follows that
Vg =0 for kp =0, implying that the carrier wave vector is
at the middle of the Brillouin zone and thus no energy is
transported. Therefore, the NLS equation (3.10) depends
only on space and time variables x and ?, respectively.
Let us consider the transformation

Fi(x,t)=E(x)e ', (5.1

where () is the envelope angular frequency defined by

QA=0—0,, (5.2)
with , the carrier wave frequency and o that of the in-
coming wave striking the nonlinear medium. To assume
the slow variations of the envelope function, {} must be
neglected compared to w, and o (i.e., ) <o, ~w). E(x)
gives the spatial shape of the envelope function. Substi-

tuting (5.1) in the NLS equation, one obtains

dEQ

o T ENE=0,
X

(5.3)

which is the Helmholtz equation relative to a homogene-
ous nonlinear system. The variable n(|E|) is the optical
analog of the index of refraction; it depends on |E| via
the relation

2(1E|)=1+%|E|2. (5.4)
The dependence of n(|E|) on the amplitude function |E |
shows the compatibility of Eq. (5.3) with the nonlinearity
of the system: the well-known nonlinear Kerr effect. In
the case of inhomogeneous nonlinear systems, it is usual
to add on the right hand side of (5.4) a function u(x ) that
describes the distribution of impurities. This is particu-
larly the case of random media [31]. (Q/P)'"? contained
in (5.3) is the wave number of the linear waves in the
medium. We note that for opposite signs of (1 and P
(2<0 and P >0), the incoming wave frequency lies in
the natural gap of the continuous system. The knowledge
of the function E(x) suffices to give the properties of the
envelope function in the nonlinear medium. Let us find
the solution of (5.3) in the form

E(x)=Eyq(x)e' ™ (5.5)

where E is the amplitude of the incoming wave; g and o
are real functions of the space variable x and are the am-
plitude and phase, respectively, of the envelope function.
Inserting (5.5) into (5.3) and collecting the imaginary
part, one obtains after integration the following expres-
sion of the phase:

(5.6)

a(x)=f1( )dx+ao,

where A4 and o, are constants of integration and
I(x)=q%x). The integration of the real part of the
equation resulting from the substitutions of (5.5) into (5.3)
gives the cnoidal wave type equation for I(x ):

Q, Q

E013+4 2 —I>*—4BI+44*=0, (5.7

dx
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where B is the arbitrary constant of integration; 4 and B
are given by

A =I‘l’lkLIL N (5.8)

%
B=2217+ (u§+A%)+% I, . (5.9)

Two important cases can now be considered: Q,/P=>0
and Q, /P <0. It is important to note that in the case of
no long-range interaction and no competitive or coopera-
tive effects between short-range interactions (J,J =0), one
has only Q, /P =0 in the continuum medium approxima-
tion, since Q, and P are always positive [30,9]. Because
of the long-range interaction and the competitive or
cooperative short-range interaction effect, one should
have both cases (i.e., Q,/P >0 or Q,/P <0) in the con-
tinuum approximation, depending on the domain of pos-
sible values of the long-range parameter r. Defining

v=2QrE2 yo=_20  _ —2PB V_ZPAz
3 0’ 27 ’ 1= ’ - ’
P ElQ, Q,E}’ ° QE}
(5.10)
Eq. (5.7) becomes
dl =xdx . (5.11)

V = v [B4vI*+v,I +v,]

From the boundary conditions, we know that I; is one of
the three zeros of the denominator of the lefthand side of
Eq. (5.11). The two others are given by

2263
I
I2=_ —L_+ 9
2 QEj
L[, e 24%p | s13
2 E} E} G139
Qr 0 OILQr

In general, the integration of (5.11) assumes that one be
able to arrange the roots I;, I,, and I,; this implies some
relations between lattice and wave parameters that are
not always analytically expressible. To solve this ap-
parent problem, we compute I, Iy, and I, from the
following relations:

Imin=min[Il’Iz’IL] ’ (5.14)
I y=max[I,I,,I;], (5.15)
Iimz(ll+I2+IL)_(Imax+Imin) . (5.16)

These relations assign to I, In.., and I;,,, one of the
variables I;, I,, and I,, so that one always has
Imin <Iint <Imax'

A.Casel: Q, /P20

The standing wave solution exists only if I}, <I <I_,,,
according to the value of Q, I, or I_,, can be identified
to I; and the other to I,. Equation (5.11) now takes the

I
I,=— <4 Q 3 form
2 QrEO dI J—
172 =11 vydx ; (5.17)
— I_L+ Q 24°%P (5.12) ‘/(Imax—I)(I—Iint )(Imin)
2 2 ’ .
2 QF; Eol.Q, the solution of (5.17) is then [32]
J
(o B2, —1.)]"
I,.—ml_;, sn® 2Es ;; o (x—L ),\/;
I(x)= 2 I 73 ; (5.18)
l_man [ Qr 0 x;;: min (x—L), \/_n_z ]
with
I —1I.
m=—E (5.19)

Imax _Imin

B. Case2: Q,/P<0

The root I, is always negative and the standing wave solution arises only if I,,;, <I <I,, or I

<I. In the first

max —

case, I, is identified with I,. In the linear case approximation, and with the particular choice of Q, one could have
I; =0; thus, I(x) becomes negative and the solution is unphysical since I(x ) is the wave intensity at point x. For this
reason, the second condition is valid: I, <I. The solution is, however, given by

172
—QrE%(Imax —Imm)

2P

2

Iipe—mlI max SIU

I(x)=

(x—L),Vm

172
—QrE(z)(Imax_Imin)

2P

1—m sn?

(x—L),V?n_]

, (5.20)



2264 C. TATUAM KAMGA AND T. C. KOFANE 50
i SG ; J,=0.1; G,=1.0; ¢,~0.0
with . 25 L 1; G=1 po=
I..—1I.. .
m=—"t_Tn (5.21) £ 20f"
Imax_Imin % )
The envelope wavelength in the nonlinear medium de- '-E 15
duced from (5.18) and (5.20) is 5
10
w
A= 4K (m) 77 (5.22) S
19 g s
E, 3 —P_ (I max — L imin) g
0 N " N

where K(m) is the complete elliptic integral of the first
kind. Once the standing wave solutions are known, one
can compute the transmissivity of the nonlinear system.
Using the boundary condition at x =0 and the condition
on the wave at the output of the medium (x =L ), we can
now numerically study the influence of the long-range in-
teractions on the transmission properties of the system
according to the procedure of Chen and Mills [35-37].

VI. NUMERICAL RESULTS AND DISCUSSION

In the following, we consider incoming waves with an-
gular frequency near the gap threshold. The carrier wave
number is at the middle of the Brillouin zone. Therefore,
the group velocity is v, =0. The nonlinearity and disper-
sion coefficients, respectively, take the form

a)l
Q="(%a-3p) 6.1)
_cXr)—awgf(r)

P=—— . (6.2)
2w

It is now clear that the long- and short-range parameters
only modify the dispersion in the long-wavelength ap-
proximation. The numerical values of parameters used
for our figures are in normalized units.

A. Long-range interaction effects
on the resonance curves

One of the problems in numerical analysis is the choice
of realistic parameters for modeling the physical situa-
tion. First, we have to choose the length (L) of our finite
nonlinear medium. Because of the possible resonance at
the maximum of transmission, one must take care of this
choice. At the resonance, one or more complete periodic
waves must be observed in the nonlinear finite medium.
Let us consider the wavelength A of the standing wave
defined by (5.22) for a given value of r. At the resonance,
we have L =N_ 4A, where N4 is an integer number of
the envelope wavelength in the nonlinear medium. As
shown in Figs. 3(a) and 3(b), the wavelength A depends on
the incoming wave amplitude (E,). In Fig. 3(a) (i.e., for
r 0.4, $,=0.0, and J, »=0.1), the maximum wavelength
corresponds to the linear approximation of the nonlinear
medium (E,~=0), and increases with the long-range pa-
rameter r. As E increases, the envelope wavelength de-
creases corresponding to a probable compression of the
standing wave. The same behavior is observed in Fig.

3(b) for r=0.6 after the maximum wavelength (A_,,),

0.0 0.2 0.4 0.6 0.8 1.0
INCOMING WAVE AMPLITUDE: E,

SG ; J,=0.1; G,=1.0; ¢,=0.0

120

" (b) ————— r=09

/'I -\ _____ r=08

96 ’_/' ‘.‘ ............. r=07
[ .-~ \,‘ r=086
72t 1

48}

24

ENVELOPE WAVELENGTH: A

0 " " " L

0.0 0.2 0.4 0.6 O. 1.0
INCOMING WAVE AMPLITUDE: E,

FIG. 3. Envelope wavelength A as a function of the incoming
wave amplitude in the cooperative short-range interactions case
(J,=0.1 and G,=1.0) and for an unperturbed sine-Gordon po-
tential (¢,=0); (a) r <0.5, and (b) r > 0.5.

which no longer corresponds to the linear case. Between
the linear case (E;~0) and the amplitude E,, corre-
sponding to the maximum wavelength, we note the in-
crease of the wavelength equivalent to a dilatation of the
standing wave. If the length of the medium is chosen to
be less than the maximum wavelength, for example,
L =15, no complete standing wave will be observed in the
nonlinear medium for r=0.4 if the maximum of
transmission arises for E; <0.2. Indeed, from Fig. 3(a),
the wavelength is, in this case, greater than the length of
the medium. The choice of L for any given value of E|
supposes that A is replaced by A_,, we have
L =N_odrmax- AS Apay increases with the long-range pa-
rameter, to study the transmission properties of our mod-
el, whatever E;, and r, we must take A, corresponding
to the greatest value of .

B. Long-range interaction effects
on the transmission properties

The second step of our numerical studies is to study
carefully what role parameters r and J, play in the
transmittance of the sine-Gordon system. The theory
developed here is also valid for any potential, such as the
®* potential. The algorithm used here is that described
by Chen and Mills [35-37]. Figure 4(a) is obtained for
the incoming wave angular frequency w=0.985. The
characteristic velocity ¢; and the harmonic constant of
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interaction G, are chosen to be equal to 1.0. For L =20,
we vary the incoming amplitude from approximately zero
to 0.5. It follows that for a more extended range of in-
teractions (i.e., increasing values of r), the number of the
maximum of transmission decreases, the size of the hys-
teresis cycle is reduced, and the bistability progressively
disappears. Figure 4(b) shows the effect of the long-range
parameter on the envelope function. When r increases,
there is a progressive dilatation of the standing wave fol-
lowed by a decrease of the maximal amplitude. These re-
sults correspond to the same characteristic parameters as
in Fig. 4(a), namely, the unperturbed sine-Gordon system
(¢0=0.0) and cooperative short-range interactions (i.e.,
G,=1.0 and J,=0.1). The behavior of the transmit-
tance, as previously mentioned, depends on the length of
the medium and on the long-range parameter. If this pa-
rameter is chosen such that the resonance curve corre-
sponds to one of the curves of Fig. 3(b), the behavior of

SG: PQ>0, L=20, ¢,=1.0, ¥=0.985, $,=0.0,J,=0.1,Go=1
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FIG. 4. (a) Transmissivity of the nonlinear medium as a func-
tion of the incoming wave amplitude E, for different values of r
(0.1, 0.3, 0.5). This corresponds to the case of cooperative
short-range interactions (J,=0.1, G,=1.0) with L=20,
¢, =1.0, ®=0.985, and ¢,=0.0 in normalized units. (b) En-
velope amplitude in the nonlinear medium for different values of
the long-range parameter. The different curves are obtained at
the first maximum of transmission for each value of r.
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the transmittance will change because of the asymmetry
shown by Fig. 3(b). First for r 20.7 we must take higher
values of the length for the reason previously mentioned.
For L =60, and for the same characteristic parameters as
in Fig. 4(a), the transmissivity is given in Fig. 5(a); we
note that for r=0.8, the width of the bistability is more
important than for r=0.7. Moreover, the appearance of
the third maximum of transmission corresponds to the
formation of a supplementary mode because of the conju-
gation of the compression and the resonance condition.
In Fig. 5(b), we show envelope standing waves for (I)
r=0.7, and for (II) and (III), » =0.8 for the same charac-
teristic parameters as in Fig. 5(a). Curves (I) and (II) are
obtained at the first maximum of transmission of curves
in Fig. 5(a). Here again we note that, when r increases,
the width of the standing wave increases. Curve (III) of
Fig. 5(b) corresponds to the third maximum of transmis-
sion of Fig. 5(a) obtained for » =0.8; it shows that there is

scl;: PQ>0, L=60,c;,=1,w=0.985,0=0, J,=0.1, Gg=1
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FIG. 5. (a) Nonlinear transmissivity versus the incoming

wave amplitude for higher values of parameter r. Except for the
value of the length L =60, the other characteristic parameters
are the same as in Fig. 4(a). (b) Standing waves, relative to the
finite envelope function for (I), »=0.7; and (II) and (ITI), » =0.8.
Envelope functions (II) and (III), respectively, correspond to the
first and third maximum of transmission of (a) (r=0.8). The
variable X is in units of the length scale a.
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no integer number of envelope periods; therefore, there is
no envelope resonance. The increase in the number of
envelope modes is a manifestation of the nonlinear effect
that shrinks the lower gap and allows the propagation of
waves with forbidden frequencies.

Figure 6(a) shows the nonlinear transmissivity of the
unperturbed sine-Gordon system allowing long-range in-
teractions and competitive short-range interactions. As
shown by Fig. 2, for J,=—0.1 the hole solution is ex-
pected for r >0.6. We now look for the role of the long-
range parameter when PQ <0. Figure 6(a) is obtained for
L =90 and r=0.7 and r=0.8, respectively; we note that
the number of resonance states decreases when r in-
creases. Moreover, for a given value of r the size of hys-
teresis increases from one cycle to the next. We have
seen in Fig. 2 that in the case of competitive short-range
interactions (J,=—0.1) the coefficient K =PQ is nega-
tive over a particular value (r,=0.6) of . As has been
forseen by Remoissenet and Flytzanis, hole (or dark) type
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FIG. 6. (a) Effects of the long-range parameter on the

transmissivity in the competitive short-range interactions case,
and for PQ <0 with L=90; J,=—0.1, G,=1.0, ©=0.985, and
c; =1.0. (b) Effects of the long-range parameter on envelope
functions at the first maximum of transmission of curves in (a)
relative to r=0.7 and r=0.8. These results are obtained for
L =90, w=0.985,J,=—0.1, G,=1.0, and ¢o=
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solutions are expected due to the long-range parameter.
This theoretical result is confirmed in Fig. 6(b), where we
can note the diminution of the number of envelope modes
when the long-range interaction parameter increases.
Simultaneously, the maximum amplitude increases.

C. Short-range interaction effects
on the transmission properties

We now look for the role played by the short-range in-
teractions in the transmission properties of the system.
Because J, and r are independent variables, this will be
done for =0 and, in both cases, J, 20 and J, <0. Inthe
cooperative short-range interaction case, Fig. 7(a), ob-
tained for L=16 and r=0, shows that the incoming
wave amplitude corresponding to the maximum of
transmission and the threshold of bistability increases
with the short-range parameter. Therefore, the size of
the hysteresis cycle decreases. The stationary wave en-
velope obtained at the first maximum of transmission of
each curve of Fig. 7(a) shows an increase of the amplitude
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FIG. 7. (a) Cooperative effects of the short-range interactions
on the transmissivity for L=16; J,=0.0,0.2,0.4; G,=1.0;
©=0.985; and c; =1.0. (b) Cooperative effects of the short-
range parameter on envelope functions at the first maximum
states of transmission. These results are obtained for L =16,
®=0.985, J,=0.0,0.2,0.4, G,=1.0, and ¢p=
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and a progressive dilatation as J, increases, Fig. 7(b).

When short-range interactions are competitive, Fig.
8(a) shows that there is a diminution of the bistability
threshold amplitude as |J,| increases. As a result, there
is an extension of the hysteresis cycle that yields the
multistability of the system transmission. Consequently,
in the competitive short-range interactions, the system
can switch from a bistable to a multistable state of
transmission. As shown in Fig. 8(b), the envelope func-
tion in this case contrasts with that of the cooperative
case: compression of the envelope, diminution and
stretching of amplitude when |J, | increases.

D. Limits of r and J,

Previous numerical studies show the effects of short-
and long-range interactions on the nonlinear response of
an excited finite system. A question remains unsolved:
What are the limits of parameters r and J, over which
the nonlinear response of the system is unphysical? Be-

cause the system must be resonant [i.e., I(0)=I(L)]at
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FIG. 8. (a) Competitive effects of the short-range interactions
on the transmissivity for L =16, J,=0.0,—0.2,—-0.4, G,=1.0,
©=0.985, and ¢, =1.0. (b) Competitive effects of the short-
range parameter on envelope functions at the first maximum
state of transmission. These results are obtained for the same
characteristic parameters as in (a).
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FIG. 9. (a) Illustration of the limiting values of the long-
range parameter. Effects of the long-range interactions (r=0.4,
r=0.5, r=0.6, r=0.8) on the nonlinear transmissivity in the
case of no cooperative or competitive short-range interactions
(J,=0) and for L =16, ¢, =1.0, ©=0.985, G,=1.0. (b) and (c)
illustrate the long-range interaction effects on the standing wave
function, in the case of no short-range interaction. Figures are
obtained for r=0.4,0.5,0.6, L =16; ®=0.985; G, =1.0; and for
the unperturbed sine-Gordon system. (b) shows that when the
long-range interaction increases, the amplitude decreases. (c)
shows that there is no more resonance after a certain value r. of
r:0.5<r.<0.6.
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the maximum of transmission, the resonance condition
will be taken as the basic criterion of our present investi-
gation. Let us consider Fig. 9(a), corresponding to the
transmission curves for L=16, J » =0, and
r=0.4,0.5,0.6,0.8. We note the tendency and the for-
mation of a small hysteresis cycle, respectively, for
r=0.6 and r=0.8. In Fig. 9(b), relative to stationary
waves at the first maximum of transmission, we note that
for r=0.6 and r=0.8, the envelope amplitude is very
low. A zoom of this envelope as shown in Fig. 9(c) shows
that there is no resonance in contrast to the expecting re-
sults. For r=0.5 and r=0.6, there is resonance within
the system. The irregular behavior mentioned above,
coming from the modulation of the long-range parame-
ter, means that there is a critical value r, of r over which
there is no resonance. For values chosen in the present
analysis, we have 0.5 <r. <0.6. The exact value can be
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FIG. 10. (a) Effects of the short-range parameter J, on the
transmittance of the unperturbed sine-Gordon system. Curves
are obtained for r=0.8, L=30, G,=1.0, ©=0.985, and
¢, =1.0. (b) Standing wave in the unperturbed sine-Gordon sys-
tem for different values of the short-range parameter J, and for
r=0.8 at the maximum of transmission. The other values used
here are L =30, =0.985, and G, =1.0. There is no resonance
for J,=0.1 and the corresponding amplitude is very low. As
seen previously, this shows that there is a limit J,. of J, for
given values of r and L.
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FIG. 11. (a) Comparison of the cooperative (J,=0.01) and
competitive (J,= —0.01) effects on the nonlinear transmittance
for r=0.6. The curves corresponding to r=0.6 and r=0.9,
both for J,= —0.01, show the effects of the long-range interac-
tions on the nonlinear transmissivity for competitive effects with
L=35,c;,=1.0, »=0.985, and G, =1.0. (b) Comparison of the
cooperative (J,=0.01) and competitive (J,=—0.01) short-
range interactions effects on the standing wave function ob-
tained for r=0.6, L =35, ®=0.985, G, =1.0 and for an unper-
turbed sine-Gordon system. (c) is the standing wave of a “‘dark”
type for competitive short-range interactions (J,= —0.01) and
r=0.9. The other parameters are the same as in (a).
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obtained by solving L =N, 4A according to the variable
r, where N4 is the number of envelope periods in the
system and A the wave number of the stationary elliptic
wave. This limiting value of r is a function of the length
and the short-range interactions parameter.

We now look for the role played by the short-range pa-
rameter J, on the nonlinear transmission of the system.
For this purpose, we choose L =30 and r=0.8; c¢; and
G, remain the same as in the previous cases. Thus Fig.
10(a) shows that when J, increases, the number N, of
maximum states of transmission decreases (N,=3 for
J,=0.0005 against N,=1 for J,=0.1). The threshold
E, of bistability occurs for greater incident energy when
J, decreases (for J,=0.0005 and for J,=0.1). Conse-
quently, the memory of the systems due to hysteresis is
less reliable as J, increases. Envelope functions present-
ed in Fig. 10(b) are relative to the first maximum of each
of the transmission curves presented. The role of J, is
shown in Fig. 10(a). We note that for fixed values of L
and r, at the maximum of transmission, we do not have a
complete standing wave (i.e., a wave extended on its en-
tire period) for J,=0.1. By decreasing the value of J,
(J,=0.0005), one period of a standing wave is obtained
at the resonance. If Jp is fixed at 0.1, resonance curves in
Fig. 3(b) show that for »=0.8, we should increase the
length (L) for 30 to 60 before obtaining a complete stand-
ing wave. Consequently, decreasing the value of J, for
fixed values of L and r is almost equivalent to increasing
L for fixed values of J, and r.

E. Coexistence of envelope and dark solutions

In Fig. 11(a), we compare the competitive and coopera-
tive effects on the transmission coefficient for L =35; ¢,
o, G,, and ¢, are the same as in the previous case. For
r=0.6, we note that the threshold of bistability does not
significantly depend on the sign of J, (cooperative or
competitive). The maximum of transmission is obtained
for greater values of incident energy in the cooperative
short-range interaction case. In the competitive case,
when 7 increases from 0.6 to 0.9, the size of the hysteresis
cycle decreases, for E, > 0.24, we note the appearance of
the second bistability for »=0.9, while that correspond-
ing to »=0.6 disappears. In Fig. 11(b), we compare the
role of cooperative and competitive short-range interac-
tions on the envelope function. We note a compression of
the envelope standing wave in the case of competitive in-
teractions. When we increase the long-range parameter
to r=0.9, there is a complete change of behavior of the
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solution since PQ is negative. Instead of the envelope
function, a “dark” type solution is obtained in Fig. 11(c).
The number of modes increase for a low amplitude, com-
pared to the case r=0.6 for the same value of J, (ie.,

,=—0.01).

VII. CONCLUSION

As forseen by Ishimori, using the Lennard-Jones cou-
pling potential, and by Remoissenet and Flytzanis in the
Kac-Baker-type long-range potential, we have shown that
the long-range parameter plays a role only in the disper-
sion property of nonlinear systems in the long-
wavelength approximation. In the competitive short-
range interactions case, and for r—1, the threshold of
the gap corresponds to an angular frequency o,, o, that
increases (up to @g) when the short-range coupling pa-
rameter J, decreases. For a quartic anharmonic sine-
Gordon system with competitive short-range interac-
tions, envelope and hole standing waves can coexist. The
existence domain of each solution depends on the short-
range parameter J,. The numerical study of the non-
linear response of the system discloses the fact that the
envelope resonance is linked to the maximum state of
transmissivity and to the length of the system, which
must be greater than the envelope wavelength relative to
the corresponding incoming wave amplitude. Even if a
given value of the length of the nonlinear system does not
give rise to the physical envelope resonance, one can nev-
ertheless reach this state by decreasing progressively the
value of the short-range coupling parameter. In the
cooperative short-range interaction case, when the inten-
sity of long-range interactions increases (i.e., increasing
values of parameter r ), the size of the hysteresis cycle de-
creases and the bistability tends to disappear. Simultane-
ously, the width of the standing wave decreases. It is
found that in a finite system, increasing the value of
length (L) for a fixed value of J, or decreasing the value
of J, for a fixed value of L allows us to have elementary
excitations even for a higher interaction range
(r—0.8;0.9). For fixed values of L and J,, there is a lim-
it r. of r over which no elementary excitation is observed.
As examples of applications, we have based our numeri-
cal studies on a sine-Gordon system, but it can also be ap-
plied to other types of systems such as the ®* system,
double sine-Gordon system, etc. Finally, we hope that
the general approach of our studies provides applications
in many fields of physics, particularly in optics and in
solid state physics.
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